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Statistical mechanics of learning with soft margin classifiers
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We study the typical learning properties of the recently introduced soft margin classifiers~SMCs!, learning
realizable and unrealizable tasks, with the tools of statistical mechanics. We derive analytically the behavior of
the learning curves in the regime of very large training sets. We obtain exponential and power laws for the
decay of the generalization error towards the asymptotic value, depending on the task and on general charac-
teristics of the distribution of stabilities of the patterns to be learned. The optimal learning curves of the SMCs,
which give the minimal generalization error, are obtained by tuning the coefficient controlling the trade-off
between the error and the regularization terms in the cost function. If the task is realizable by the SMC, the
optimal performance is better than that of a hard margin support vector machine and is very close to that of a
Bayesian classifier.
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I. INTRODUCTION

Neural networks are models of learning systems co
posed of interconnected units that, besides their biolog
relevance, have been shown to be very useful for classifi
tion tasks. The weights of the connections are adjus
through a process calledlearningusing a set ofM examples.
It is assumed that these are labeled following an underly
rule, usually calledteacher. The purpose of learning is no
only to classify correctly the examples of the training set,
also togeneralizecorrectly on new inputs. To this aim, th
network has to infer the teacher’s rule. The quality of th
inference is measured through the generalization erroreg ,
which is the probability of misclassification of a new, ra
domly selected, input pattern. Aseg is not a quantity avail-
able for the training process, learning is usually perform
through the minimization of a function of the training pa
terns. The tools of statistical mechanics allow us to study
properties of such learning systems, providing a deep un
standing of their typical behavior@1–5#. In particular, it has
been shown that the minimization of the training error, th
is, the fraction of training patterns misclassified by the n
work, does not necessarily provide the best general
@6–8#. This is why other cost functions, based on geome
cal properties such as the distance of the patterns to the
criminating surface, or on probabilistic error measures s
as the likelihood, are used for training.

The simplest instance of a neural network, the percept
is a single binary unit whose output is the sign of t
weighted sum of its inputs. It can only perform linear sep
rations of the patterns. If the classification task requires m
complex discriminating surfaces, these may be implemen
using feedforward networks with a layer of hidden un
whose number isa priori unknown. The cost functions use
to tackle this problem usually have several minima, and
termining the lowest one is one of the main difficulties

*Also with Centre National de la Recherche Scientifique.
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learning with multilayer neural networks. This is also a pro
lem for the theoretical analysis, as the typical properties
such networks depend crucially on the structure of
minima in the weights’ space.

Recently, a new learning scheme has been propo
which strives to get rid of the problem raised by the multip
minima. The obtained classifiers are calledsupport vector
machines~SVMs! @9,10#. Instead of directly looking for a
complicated discriminating surface in input space, the p
terns are first mapped to a high-dimensionalfeature space,
where the rule to be learned is~hopefully! linearly separable.
If this is the case, a simple perceptron can be trained to
the separation in feature space. Denoting the weights bw
PReN, the perceptron’s output to an inputxPReN is given
by s5sgn(w•x1b), whereb is a bias and the dot represen
the inner product in ReN. Thus, the patterns belonging t
different classes are separated by a hyperplane orthogon
w at distanceubu/iwi from the origin, withiwi5Aw•w. The
SVM’s solution is themaximal stability perceptron~MSP!
@11# in feature space, also called maximal margin hyp
plane. This is the hyperplane at maximal distancekmax from
the closest patterns in the training set. Two different form
lations of this problem in terms of cost functions have be
proposed in the literature. In the first one@11#, the cost func-
tion counts not only the number of misclassified patterns,
also the number of correctly classified ones that lie at a
tance smaller thank from the separating hyperplane

EMSP~k!5 (
m51

M

Q~kiwi2hm!, ~1!

whereQ is the Heaviside function, and

hm[tm~w•xm1b!, ~2!

is called aligned field of the training pattern xm ,
tmP$21,1% being its class. If theM N-dimensional patterns
are correctly classified, the aligned fields are all positive. T
SVM solution hasw andb corresponding tokmax, the larg-
©2001 The American Physical Society07-1
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est possible value ofk such thatEMSP(kmax)50. If the train-
ing set is not linearly separable,kmax becomes negative. No
tice that there are no constraints on the norm ofw, that can
be freely chosen.

If the norm of the weight vector is chosen so that t
aligned field of the closest pattern be 1, this leads to
equivalent formulation of the problem@9,10#, in which the
function to be minimized is

ESVM5 1
2 w•w, ~3!

subject to the conditions

hm>1, m51, . . . ,M . ~4!

Clearly, the constraints~4! can only be satisfied if it is pos
sible to classify correctly all the examples. In that case, th
are no training patterns in a strip of width 1/iwi on both
sides of the hyperplane, meaning that in the error-free reg
1/iwi[kmax. An interesting property of the SVM solution i
that the weight vector and the bias can be written as a lin
combination of a subset of training patterns, thesupport vec-
tors, havinghm51.

The minimization of Eq.~1! with k5kmax is equivalent
to that of Eq.~3! with condition~4! only if the training set is
linearly separable. If errors cannot be avoided, the equiv
lence breaks down, as in one hand Eq.~1! has either negative
kmax, or several minima ifkmax>0 is imposed, and on the
other hand the constraints~4! cannot be satisfied. This is wh
the second formulation has been generalized@10# through the
introduction of a new set of variableszm>0, calledslacks,
which are a measure of the ‘‘amount of violation’’ of th
constraints. An increasing function of these is included in
cost function ~3! and the hard margin conditions~4! are
modified to allow some patterns to be closer to the hyp
plane than 1/iwi . The new problem amounts to minimizin

EC,k5
1

2
w•w1C (

m51

M

zm
k , ~5!

subject to the following conditions form51, . . . ,M ,

hm>12zm , ~6a!

zm>0. ~6b!

The coefficientC in Eq. ~5! is a hyperparameter that allow
to control the trade-off between the error term, defined by
slacks, and the regularization term, proportional to
squared weights. As will be shown in Sec. IV, it may
selected to optimize the generalization performance. The
ponent k in Eq. ~5! modulates the relative cost of error
depending on their distance to the hyperplane. Patterns
strip of width 1/iwi at each side of the hyperplane, wheth
correctly or incorrectly classified, as well as those incorrec
classified outside of this strip, havezm.0. 1/iwi is called
soft margin, and the resulting classifiersoft marginSVM or
soft margin classifier~SMC!.

As the cost ~5! is a quadratic function fork51 and
k52, and the domain of minimization defined by Eqs.~6a!
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and ~6b! is convex, the minimum isunique @12#. This re-
markable property makes the new formulation attractive
applications, as it allows to get rid of the multiple minim
appearing in other learning schemes. Like in the hard ma
formulation, the solution$w,b% can be expressed as a line
combination of thesupport vectors, which now include the
patterns with positive slacks. The corresponding coefficie
may be obtained by solving thedual problem ~see for ex-
ample @13#! which, for k51 or k52 has a particularly
simple expression@10#. Several efficient methods are know
for solving this kind of problems, and this is one of th
reasons why these classifiers are so widely used lately.

In this paper we study the typical properties of the SM
obtained by solving equation~5! subject to the conditions
~6a! and ~6b!, with the methods of statistical mechanics, u
ing the replica approach. It has been shown@14,15# that the
statistical properties of SVMs in high-dimensional featu
spaces@16# can be well approximated by considering
simple perceptron learning anisotropically distributed p
terns. The amount of anisotropy depends on the normal
tion of the mapping from the input to the feature space.
this paper we only consider the case of an isotropic pat
distribution, which corresponds to a non-normalized ma
ping.

The learning properties of a perceptron learning an iso
pic input pattern distribution have been extensively stud
@17#, mainly for linearly separable, i.e., realizable, tasks.
this case the hypothesis of replica symmetry is generally c
rect, allowing for a full analytical statistical mechanics ca
culation. In particular, the behavior of the generalization
ror eg in the limit of very largea[M /N has a universal
power law decayeg'a2n with n51. Its prefactor allows to
characterize the convergence to perfect learning of differ
learning algorithms. If the rule to be inferred cannot be ge
eralized without errors, the task is calledunrealizable. In this
case the replica symmetric solution, although generally
stable, is believed to provide a good approximation of so
learning properties. However, in the case of a linearly se
rable rule learned with noisy training patterns, which is th
unrealizable, the replica symmetric approximation gives
exponentn51/2 @2# whereas one step of replica symmet
breaking shows@18# that this exponent is modified to
n52/3. As this is but an approximation to the full replic
symmetry breaking scheme@19# at zero temperature, it is no
clear whether this exponent is correct. The same expon
has been found in the case of a quadratic hard margin S
learning a linearly separable task, that is, a rule simpler t
those implementable with the student’s architecture@16#. An-
other case of interest is that ofinconsistent learning@6#,
which refers to realizable tasks learned with algorithms t
do not strive to minimize the number of training errors.
this case, the exponent within the replica symmetric appro
mation was found to ben51/2 @6#.

As the soft margin problem has a unique minimum f
k51 andk52, even if the task is unrealizable, the repli
symmetry hypothesis should be always correct, providin
framework for the study of complex classification tasks ev
when the mismatch between the student and the teacher
ders error-free learning.
7-2



C
le
p
it

e
ha

t
th

al
e
e

a
tio
th
i-

th
le

to

c
m

g
r

an

s
ly

al
ng

ur

e

ron

to
of

n-
by

e

l
dy
m

the
-

pos-

ttern

at
op-

and
’s
in
as

STATISTICAL MECHANICS OF LEARNING WITH SOFT . . . PHYSICAL REVIEW E 64 031907
In this paper we present the statistical properties of SM
learning several kinds of realizable and unrealizable ru
The model and the statistical mechanics approach are
sented in Sec. II. The theoretical properties of SMCs w
exponentsk51 and k52 in the cost function~5! are ob-
tained as a function of the training set sizea[M /N in the
thermodynamic limitN,M→`. Several teacher rules ar
considered in Sec. III. One of our most striking results is t
the generalization error for largea exhibits a very rich vari-
ety of asymptotic behaviors, depending on the type of rule
be inferred. In particular, even if the task is realizable,
soft margin algorithm is inconsistent unlessC→`. For finite
C, we find that the fraction of training errors at finitea is
finite, and the generalization error vanishes asymptotic
with a following a n52/3 power law. In the unrealizabl
tasks considered,eg converges to an asymptotic finite valu
either exponentially or with a power law withn51/2. The
usual exponentn51 only arises for error-free learning of
realizable task. In Sec. IV we derive the best generaliza
performances of SMCs through the determination of
value Copt(a) that minimizes the generalization error. F
nally we present a summary of our results in Sec. V, toge
with some open questions. Most details of the proofs are
to the Appendix.

II. STATISTICAL MECHANICS APPROACH

We consider a student perceptron of weight vec
w5(w1 , . . . ,wN), without threshold. That is, we setb50 in
Eq. ~6a!. Given anyN-dimensional input vectorx, the clas-
sifier’s output iss5sgn(w•x): all the points lying on the
same side of a hyperplane orthogonal tow containing the
origin are given the same class. We assume that the per
tron learns the classification with the soft margin algorith
using a setLM5$(xm ,tm)%m51, . . . ,M of M examples or train-
ing patterns. These consist of input vectorsxm drawn from an
isotropic Gaussian distribution,

P~x!5
e2Nx2/2

~2p/N!N/2
, ~7!

and labelstmP$21,1% that represent the correspondin
classes. The classification tasks considered in this pape
given by the following teacher’s rule:

t5sgn@P~w0•x!#, ~8!

wherew0 is referred to as the teacher’s vector hereafter,
P(z) is a polynomial ofz. Each of its zeroszi @20# defines a
discriminating hyperplane at a distanceuzi u/iw0i from the
origin. Rules of the kind~8! partition the input space into a
many different regions as the number of zeros of the po
nomial plus one, separated by parallel hyperplanes norm
the teacher’s vectorw0. Patterns in successive regions belo
alternatively to class11 or 21. As only the zeros of the
function P(z) matter, there is no loss of generality in o
assumption thatP(z) is a polynomial. We assumeiw0i
5AN, which is equivalent to imposing the unit of distanc
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Notice that the only rule realizable for the student percept
considered in this paper is that of the linear teacherP(z)
5z.

In the following we study the properties of the solution
the soft margin problem using the by now standard tools
statistical mechanics@1,2#. That is, we assume that the e
semble of classifiers follows a Gibbs distribution defined
the energy function~5!, at a fictitious temperature 1/b, and
we take the zero temperature limit. The constraints~6a! and
~6b! play the role of infinite potential walls. Notice that th
phase space in the present case has dimensionN1M , as not
only the weightsw but also the slacks$zm%m51, . . . ,M , have
to be learned. The partition function is

ZC,k~b;LM ,P!5E exp@2bEC,k~w,$zm%!#

3 )
m51

M

Q„tmw•xm

2~12zm!…Q~zm! dw dzm. ~9!

The inverse temperatureb has obviously no physica
meaning whatsoever; it is only introduced in order to stu
the properties of the SMC which, being the single minimu
of the energy function, is selected in the limitb→`. We
assume that the number of training examples scales with
input space dimension,M5aN, and take the thermody
namic limit N→`, M→` with a[M /N constant. The free
energy per input space dimension averaged over all the
sible training sets ofM patterns,f C,k(b;P), is calculated
with the replica method, that uses the identity

f C,k~b;P!52 lim
N→`

1

Nb
ln ZC,k~b;LM ,P!

52 lim
N→`

1

Nb
lim

n→0

lnZC,k
n ~b;LM ,P!

n
, ~10!

where the overline represents the average over the pa
distribution ~7!, with labels given by Eq.~8!. Zn is the par-
tition function ofn independent replicas of the problem, th
become coupled after taking the average. The typical pr
erties of the classifier are obtained by taking the limitb
→`. The free energy~10! turns out to be a function of the
following order parameters:

Qa5
^wa•wa&

N
, ~11a!

qab5
^wa•wb&

N
, ~11b!

R̃a5
^wa•w0&

N
, ~11c!

where the brackets represent the phase space averagea
and b are replica indices. The norm of the perceptron
weight vectorQa is one of the order parameters because
the soft margin problem the weights are not normalized
7-3
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SEBASTIAN RISAU-GUSMAN AND MIRTA B. GORDON PHYSICAL REVIEW E64 031907
usually.qab is the overlap between two different weight ve
tors at temperatureb21, andR̃a is the overlap of the percep
tron’s solution and the teacher’s vector.

As for k51 andk52 the energy in Eq.~5! is a quadratic
function in a convex domain, it has a single minimum@21#,
irrespective of the kind of rule that is being learned. The
fore, we may safely assume that all the replicas are equ
lent, even in the case of learning unrealizable rules. We
tain thus the typical properties for cases where, using o
more usual cost functions like the number of training erro
full replica symmetry breaking would be required@19#. The
excellent agreement of the theoretical predictions and
numerical simulations presented in the following section i
further justification of our hypothesis ofreplica symmetry.
Thus, we setQa[Q, qab[q, andR̃a[R̃, and we define the
normalized overlapR[R̃/AQ, that only depends on th
angle betweenw andw0.

Due to the unicity of the soft margin solution, only on
point in phase space has nonvanishing probability in the li
b→`, so thatq→Q. It is convenient to introduce a new
parameter,x[b(Q2q), which reflects how fast the fluctua
tions around the minimum of Eq.~5! vanish asb→`. In this
limit we obtain the typical free energy of the SMC learning
rule defined by the polynomialP,

f C,k~P!52extr$Q,R,x% @G0~Q,R,x!2aGC,k~Q,R,x;P!#,
~12!

where

G0~Q,R,x!5
Q

2x
~12R22x!, ~13!

is an entropic term. The dependence on the rule to be lea
is embodied in the second term of Eq.~12! throughP(z),
and on the learning algorithm throughk and C. Integrating
out the slack variables in the limitb→` using the saddle
point method, we get

GC,k~Q,R,x;P!5E
2`

`

DyE
f(y;Q,R,P)

`

Dt

3min
z

W~z;y,t,Q,R,x,P!, ~14!

whereDt[dt exp(2t2/2)/A2p,

f~y;Q,R,P!5
yR sgn@P~y!#21/AQ

A12R2
, ~15!

and

W~z;y,t,Q,R,x,P!

5C zk1
$z2AQ~12R2! @ t2f~y;Q,R,P!#%2

2x
.

~16!

In ~14!, according to the saddle point metho
W(z;y,t,Q,R,x,P) has to be taken at its minimumz(t,y)
P[0,AQ(12R2]f(y;Q,R,P) for each couple (y,t). It is
03190
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easy to see that there is a unique local minimum inside
interval for k.1. For k51, W is a quadratic function ofz,
whose global minimum falls inside the allowed interval on
for a finite range of values oft. Outside this range, the mini
mum lies at the boundaryz50. As a consequence, fo
k51 the inner integral inGC,k splits into two parts. The
results fork51 andk52 are, respectively,

GC,1~Q,R,x;P!5E
(21)/AQ

(xC21)/AQ
Dt

~ tAQ11!2

2x
g~ t;R,P!

1E
(xC21)/AQ

`

Dt CS tAQ112
xC

2 D
3g~ t;R,P!, ~17!

GC,2~Q,R,x;P!5E
21/AQ

`

Dt
C~ tAQ11!2

112xC
g~ t;R,P!,

~18!

with

g~ t;R,P!5E dy

A2p~12R2!
expS 2

~y sgn~P~y!!1tR!2

2~12R2!
D .

~19!

Deriving the free energy~12! with respect toQ, R, andx
gives three coupled equations for the order paramet
These in turn determine the properties of the SMC. The
plicit expression of the saddle point equations fork51 and
k52 is left to the Appendix, where we also derive som
general properties of the learning curves described in
next sections.

The generalization erroreg , which is the probability of
misclassification of any pattern drawn with probability~7!, is
a geometric property that depends only onR and the rule to
be learned. In the case of rules of type~8!, it is straightfor-
ward to obtain

eg5E Dt HS tR sgn@P~ t !#

A12R2 D , ~20!

whereH(x)5*x
`Dt. In the particular case of a linearly sep

rable ruleP(z)5z, Eq. ~20! reduces to the usual expressio
eg5arccos(R)/p.

The distribution of stabilitiesgm[hm /iwi of the training
patternsr(g) is given by

r~g!5dS g2
1

AQ
D E

21/AQ

(211xC)/AQ
Dt g~ t;R,P!

1QS g2
1

AQ
D e2g2/2

A2p
g~2g;R,P!

1QS 1

AQ
2g D exp@2~g2xC/AQ!2/2#

A2p

3gS 2g1
xC

AQ
;R,PD ~21!
7-4
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STATISTICAL MECHANICS OF LEARNING WITH SOFT . . . PHYSICAL REVIEW E 64 031907
for the casek51, whered(y) is the Dirac delta, and

r~g!5QS 1

AQ
2g D H exp2

1

2
@g~112xC!22xC/AQ#2J

A2p

3gS 2g~112xC!1
2xC

AQ
;R,PD ~112xC!

1QS g2
1

AQ
D e2g2/2

A2p
g~2g;R,P! ~22!

for the casek52. The Dirac delta present in Eq.~21! implies
that in the thermodynamic limit there is a macroscopic fr
tion of the examples that are at a distance of exactly 1/AQ
from the hyperplane of the student, for the casek51, which
is not the case ifk52. This is a consequence of the differe
structure of the support vectors in both cases, which can
obtained by analyzing the dual problem: ifk51, all the vec-
tors at the distance 1/AQ are support vectors, whereas f
k52 they are not.

The training errore t is the average fraction of incorrectl
classified training patterns. Integrating Eqs.~21! and ~22!
over the negative stabilities we obtain,

e t5E Dt HS tR sgn@P~ t !#1kxC/AQ

A12R2 D . ~23!

As expected, the training error is always strictly smaller th
the generalization error. Both converge to the same limit
a→`.

III. LEARNING CURVES

In this section we present the learning curves, namely,
training errore t(a) and the generalization erroreg(a) of the
SMCs for different teacher rules. The results of compu
simulations drawn on the same figures have been obtaine
solving numerically the dual problem@13# using the Qua-
dratic Optimizer for Pattern Recognition program@22#, that
we adapted to the case without threshold treated in this
per. The average has been taken over as many training se
necessary~typically ;500 for smalla and;50 for biga) to
ensure that the error bars are smaller than the symbols. T
simulations are in excellent agreement with the theoret
predictions.

A. The linear rule

Introducing the expressionP(z)5z corresponding to a
linearly separable teacher’s rule in Eq.~19!, we obtain

g~ t;R,P!52 HS Rt

A12R2D . ~24!

The training and generalization errors, obtained after so
ing the extremum equations for different values of the hyp
parameterC, are plotted againsta on Figs. 1 and 2 for
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k51 andk52, respectively. The generalization error of th
hard margin classifier, solution of Eq.~3! with conditions~4!,
and that of the optimal Bayesian generalizer@23#, both of
which are error-free solutions, are included in the figures
comparison. Despite the fact that the task is realizable by
student perceptron, the training error for finiteC is positive.
It goes through a maximum and vanishes asymptotically
the limit a→`. As expected, both fork51 andk52 at any
a, e t is larger the smaller the value ofC, which controls the
relative importance of the error term in the cost function~5!.
We can also see from the figures that, givenC, the machine
with k52 performs better than the one withk51. This can
be understood from the fact that, according to Eq.~6a! the
examples that are errors havezm.1 and those that are no
errors satisfy 0<zm,1. Thus, the second term in Eq.~5!,
which is proportional tozm

k , penalizes the errors mor
heavily in the casek52, forcing the machine to classify
better than in the casek51.

FIG. 1. Linearly separable rule. SMC’s learning curves (e t be-
low, eg above! corresponding to an exponentk51 in the cost func-
tion, for different values of the hyperparameterC. The generaliza-
tion errors of the MSP and the optimal~Bayesian! generalizer, are
included for comparison. The learning curves of the optimal SM
discussed in Sec. IV, are also represented. Symbols,e t in black,eg

in white, correspond to results of computer simulations withN
5100. Error bars are smaller than the symbols.

FIG. 2. Linearly separable rule. Same as the preceding fig
with an exponentk52 in the cost function.
7-5
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SEBASTIAN RISAU-GUSMAN AND MIRTA B. GORDON PHYSICAL REVIEW E64 031907
On increasingC, the learning curves approach those
the MSP. In fact, by taking the limitC→` in our saddle
point equations we get exactly the equations of the MSP
every value ofa, independently of the powerk. This is not
surprising, as in this limit the error term dominates co
pletely the soft margin cost function~5!, which can only be
minimized if all the slack variables, and consequently
training error, vanish. This is possible because the rule
realizable. It is well known that the generalization error
the MSP is larger than that of the Bayesian generalizer e
asymptotically, as fora→` both algorithms haveeg;a/a,
but a50.5005 in the case of the MSP@24#, whereasa
50.442 for the Bayesian perceptron@23#.

The obtained behavior of the learning curves at finiteC is
reminiscent of that arising with other learning algorithm
having a hyperparameter. In the inconsistent algorithms s
ied by Meir and Fontanari@6#, patterns closer to the hype
plane than a finite imposed distancek.kmax contribute to
the cost, linearly in the case of the perceptron algorithm
quadratically in the case of the relaxation one. In the al
rithm Minimerror @24# the hyperparameter is equivalent to
learning temperature. By training with these algorithms,
well as with the SMC studied here, the generalization er
can be made smaller than that of the MSP by choosing
propriate values for the hyperparameters, at the price
learning with errors. The reason is that, in contrast with
MSP, the Bayesian solution presents a finite fraction of tra
ing patterns at any distance of the hyperplane@8#. Thus, so-
lutions with a small controlled fraction of training errors ma
be closer to the optimal bayesian hyperplane than the M
which has no patterns at distances smaller thankmax.

Unlike the generalization error of the inconsistent lea
ing algorithms, that vanishes asymptotically likeeg;1/Aa
@Ref. @6##, SMCs with finiteC present a faster power law
decay:

eg.
e0

C1/6a2/3
, ~25!

FIG. 3. Shifted linear rule. SMC’s learning curves correspon
ing to an exponentk51 in the cost function, for different values o
the hyperparameterC. Symbols correspond to results of comput
simulations withN550. Error bars are smaller than the symbo
Asymptotically,eg

`50.1179.
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where the constante0, is independent ofC and is larger for
k51 than fork52. In the limit C→` Eq. ~25! no longer
holds, and the well-known decayeg'a21 characteristic of
error-free trained perceptrons learning realizable tasks is
covered.

Independently of the value ofC, both the regularization
term, proportional toQ, and the slacks term diverge lik
;a2/3 for a→`. In fact, this divergence arises because
divided the free energy in Eq.~10! by N, instead of dividing
by N(11a), which gives the energy per degree of freedo
In the largea limit, this converges to 0 as it should, lik
a21/3. The separable case is the only one where the e
term in the cost function presents the same asymptotic
havior as the regularization term. In this limit, the soft ma
gin 1/AQ vanishes likea21/3, in contrast with the hard mar
gin behavior,kmax'a21 @Ref. @24##.

B. The shifted linear rule

Next we analyze the case of a linear teacher with a b
d.0. The corresponding polynomial has a single ro
P(z)5z2d. This teacher separates linearly the examp
with a hyperplane at a distanced/AN from the origin. As the
student perceptron has no bias (b50), zero generalization
error cannot be achieved: this rule is unrealizable. The low
value ofeg , obtained by taking the asymptotic limitR→1 in
Eq. ~20!, is eg

`50.52H(d).
The functiong defined by Eq.~19! is

g~ t;R,P!5HS Rt1d

A12R2D 1HS Rt2d

A12R2D . ~26!

Learning curves for different values ofC are represented as
function of a in Fig. 3, for the particular valued50.3.

If we take the limitC→` in our equations, we get thos
corresponding to the MSP only fora,aMSP. At aMSP, the
training error of the SMC starts increasing~discontinuously
if k52! and the generalization error curve detaches do
from that of the MSP, both through a second order ph
transition. The learning curves obtained in the limitC→`
are different fork51 andk52, in contrast with the realiz-
able rule considered before, in which they converge to tha
the MSP irrespective of the value ofk. The same features ar
present for all the unrealizable rules studied in this paper.
a.aMSP the exact curve for the MSP is unknown, as in th
region the symmetry of the replicas is broken.

For the shifted linear rules,aMSP is a decreasing function
of d. It diverges atd50, as the problem becomes separab
and tends to the perceptron’s capacityac52 in the infinited
limit. aMSP cannot be smaller thanac since in the thermo-
dynamic limit any training set can be learned without erro
for a,ac @Ref. @25##.

For finite values ofC the transition ataMSP becomes a
crossover both fore t and eg , at values ofa,aMSP that
decrease on decreasingC. The training error for alla is
larger than that for infiniteC, both for k51 andk52. The
generalization errors for different values ofC cross each
other as a function ofa. The envelope of the curveseg(a)

-

.
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corresponds to the lowest possible value ofeg reachable by
the corresponding SMCs. It depends on the exponentk.

The convergence of the generalization error to
asymptotic limit, for all values ofC, is exponentially fast
with a:

eg2eg
`.expS 2

a

ak
D ~27!

The decay constantak does not depend onC. A stronger
exponential drop of the generalization error, witha2 in the
exponent, has been found@16# for SVMs learning ‘‘easy’’
teacher rules. These not only are realizable, but present a
in the patterns distribution close to the discriminating s
face. In contrast, here the student’s hyperplane is surroun
by unlearnable patterns. The student cannot get rid of
errors by decreasing the soft margin, like with the linear ru
On increasinga, Q converges to a constant that depends
k andd while the error term in Eq.~5! increases witha. For
large enougha, the cost function is mainly dominated by th
error term, and thenC only plays the role of an irrelevan
multiplicative constant. This is why the convergence rate
the asymptotic value of the generalization error does not
pend onC.

Similar results are obtained fork52, as is shown in
Fig. 4.

C. Sandwich rule

Consider now rules of the formP(z)5z(z2d), where the
polynomial defining the teacher’s output has two roots. T
corresponding discriminating surfaces are two parallel hyp
planes, one containing the origin and the other at a dista
d/AN of it. The patterns lying between the hyperplanes
long to class11, the others to class21. Thus, not only
these are unrealizable rules, but the classification errors
necessarily correspond to patterns at a large distance o
student’s hyperplane.

Here aMSP is an increasing function ofd, starting at
aMSP52 for d50, which corresponds to the most difficu

FIG. 4. Shifted linear rule. Same as the preceding figure, with
exponentk52 in the cost function. Simulation results correspo
to N5100.
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learning task and diverging ford→`.
The properties of the SMC are obtained by replacing

g~ t;R,P!52HS Rt

A12R2D 1HS d2Rt

A12R2D 2HS Rt1d

A12R2D
~28!

in the saddle point equations~A1!–~A3! of the Appendix.
The learning curves fork52, for different values of the

hyperparameterC, corresponding to a widthd52, are rep-
resented in Fig. 5. Even though the corresponding curves
k51 are qualitatively similar, for large enougha the training
error curvese t(a) for k51 are below those fork52, given
C. This is so because the unavoidable errors, which are v
far from the hyperplane, are more heavily penalized ifk
52. Thus, the SMC tries to learn these examples even if
increases the overall number of errors. As a result, learn
patterns close to the hyperplane, that have small slacks
incorrectly classified. This can be checked up by taking
look at the distribution of stabilities, Fig. 6.

Like with the previous shifted linear rule, the norm of th
student’s weight vectorQ tends to a constant value an
therefore, the error term dominates the cost function in
asymptotic limita→`. However, instead of the exponenti
convergence, the generalization error decays asymptotic
to eg

`5H(d) like a21/2. The reason for this difference i
discussed in Sec. V.

D. The reversed wedge

Teachers defined by third order polynomials likeP(z)
5z(z2d)(z1d) with d.0, correspond to the so called re
versed wedge@26# rules. Patternsxm with w0•xmP(2`,
2d)ø(0,d) belong to class21, those outside this subspac
to class11. The generalization properties of a perceptr
learning a reversed wedge teacher have been address
@26#, and within the on-line paradigm, using Hebb’s learni
rule in @27#.

In this case,aMSP diverges both in the limits of vanishing
and infinite wedge widthd, for which the problem become

n

FIG. 5. Sandwich rule. SMC’s learning curves corresponding
an exponentk52 in the cost function, for different values of th
hyperparameterC. Symbols correspond to results of comput
simulations withN5100. Asymptotically,eg

`50.023.
7-7
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FIG. 6. Sandwich rule. Distri-
bution of stabilities of the SMC
for two different training set sizes
a, obtained withC52 in the cost
function. The vertical lines give
the position of the deltas, in the
casek51. The deltas contain 32.4
and 4.6% of the training patterns
for a51.99 and a520.25, re-
spectively.
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separable, and has a minimum atdc5A2ln 2 @Ref. @26##. At
this value ofd the patterns’ stability distribution along th
teacher’s weightw0 has zero mean. Thus, fordc , R50 for
every value ofa, and aMSP52, equal to the perceptron’
capacity.

The properties of the SMCs are deduced after insertio

g~ t;R,P!52HS Rt2d

A12R2D 1HS Rt1d

A12R2D 2HS Rt

A12R2D
~29!

into the saddle point equations.
In contrast with the problems considered before, the g

eralization error of a perceptron learning the reversed we
rule is a monotonic function ofR only ifd50 or d.dc @Ref.
@27##. The different behaviors ofeg are represented in Fig. 7

For the values ofk investigated,R has two distinct behav
iors as a function ofa, depending on the wedge’s widthd. If
d,dc , the teacher’s average stability is positive, andR(a)
is a monotonic continuous function growing from 0 to
asymptotic value11. In this range of small wedges, the so
margin learning algorithm does not converge to the minim
value of the generalization error in the limit of infinitea, as
is the case in the other tasks considered before. In fa

FIG. 7. Reversed wedge rule. Generalization error as a func
of the normalized overlapR between the teacher’s and the studen
weight vectors, for different wedge widthsd.
03190
of
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‘‘overshoots,’’ in the sense thatR(a) continues to grow be-
yond the value that optimizes the generalization perf
mance. Correspondingly,eg(a) goes through a minimum a
finite a but, asR increases witha, it converges to a large
value, eg

`[eg(R51). The learning curves of Fig. 8 are a
example of this behavior. Notice that for0.8086,d,dc

this value ofeg
` corresponds to thelargestvalue of the stu-

dent’s generalization error. Moreover, for 0.67 449,d,dc
the asymptotic behavior is even worse than a random gu
becauseeg(R51).0.5.

At d5dc there is an abrupt change of the learning beh
ior, as beyond this wedge’s width the average teacher’s
bility is negative, andR becomes a decreasing function ofa.
Correspondingly, the soft margin solution converges to
optimal generalizer in the limita→`. This corresponds to
R521, because for larged, most of the patterns lie inside
the reversed wedge, so that the student’s weight vector te
to orientantiparallel with the teacher’s vectorw0, in order to
classify correctly most of the examples. Learning curves
d52.dc obtained with exponentk51 for the slacks expo-
nent in the cost function are represented in Fig. 9.

As for the sandwich rule, the generalization error deca
independently ofC, asa21/2 to the corresponding asymptoti

n

FIG. 8. Reversed wedge rule withd50.3. SMC’s learning
curves corresponding to an exponentk51 in the cost function. The
optimal value of the generalization error iseg

opt50.178, but the
SMC converges asymptotically toeg

`50.235. Simulation results
correspond toN5100.
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values, eg
`5122H(d) for d,dc, and eg

`52H(d) for d
.dc. The same asymptotic behaviors foreg andR, but with
different prefactors, were obtained by Inoueet al. @27# for
the online Hebbian learning scenario.

The asymptotic value ofQ tends to zero asd tends todc .
In the two limiting casesd→` andd→0, the task become
linearly separable and correspondinglyQ→`.

For the particular case ofd5dc , the only solution of the
saddle point equations isR50 for every value ofa. This
‘‘no learning’’ regime is discussed in Sec. V.

IV. OPTIMIZATION OF THE HYPERPARAMETER

The figures of the preceding section show that the beh
ior of the generalization error of the SMC is not monoton
with C. It can be seen that there is an optimal valueCopt(a)
that allows to obtain the minimum generalization error
eacha. Obviously,Copt cannot be calculated using the trai
ing examples alone, so that in the applications it can only
estimated. Several methods for doing this have been
posed recently@28,29#. We have determined the statistic
properties of the optimal SMC by findingCopt(a) for all the
rules, thus providing reference curves against which res
obtained using the different estimators may be tested.

The optimal generalization curves for the different ru
considered in this paper are represented on the figures o
preceding section. Notice that fora,aMSP, the MSP is not
optimal for any value ofa, as it is obtained in the limitC
→`. In the case of the realizable linear separation, the
timal generalization error of the SMC vanishes asympt
cally as 0.488a21 for k51, and as 0.449a21 for k52. The
latter is very close to that of the Bayesian perceptr
0.442a21, but the curves are also very close for finite valu
of a, as can be seen in Fig. 2. Notice that, even fork51, the
asymptotic decay ofeg for the SMC is faster than that of th
MSP, which iseg;0.5005a21. This is an interesting result
as it shows that, even when a hard margin solution ex
learning with a soft margin machine allows to obtain bet
classifiers.

For the nonseparable cases, even ifCopt allows one to

FIG. 9. Reversed wedge rule withd52. Learning curves ob-
tained with different values of the hyperparameterC, with k51 in
the cost function. Asymptotically,eg

`50.0455.
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obtain the best performances at finitea, all the learning
curves, including the optimal one, behave asymptotically
exactly the same way, as shown in the corresponding
tions.

The evolution ofCopt with a can be seen in Figs. 10 an
11. The behavior of the curves is qualitatively similar for t
shifted linear rule and the reversed wedge with smalld on
one hand, and for the sandwich rule and the reversed we
with larged on the other. The divergences ofCopt are related
to the presence of errors with unbounded slack values. Foa
beyond the divergence,Copt5`.

V. DISCUSSION

In the preceding sections we presented the learning cu
of a SMC learning a variety of rules, characterized by
anisotropy axis parallel to the teacher’s vectorw0. Some of
the obtained results, and in particular the asymptotic beh
ior in the a→` limit, can be generalized to other teach
rules ~proofs are detailed in the Appendix!. As shown by
Reimann and Van den Broeck@30#, it is useful to character-
ize the teacher rules by the average patterns’ stability o
perceptron aligned with the teacher’s vector,

^g&5E dg r~g!5E Dz zsgn@P~z!#, ~30!

where the second equality in Eq.~30! stems from our as-
sumption~7! that the patterns’ distribution is a Gaussian.

In the Appendix we show that in the limita→`, both for
k51 andk52, R converges asymptotically either to 1 or
21, that is, the student perceptron gets either comple
aligned or completely antialigned with the teacher’s vect
Furthermore, for nonseparable rules, 12R2;1/a. In this
limit of R→61 we find eg→eg

`5*Dzu„7zP(z)…, irre-
spective of the teacher’s rule. The convergence law for
asymptotic value depends on whether or not the polynom
P(z) defining the rule in Eq.~8! has a rootzi50. If 0 is not
a root of P(z), P(0)Þ0 and eg2eg

`;exp@2« /(12R2)#
with « a constant, whereas if 0 is a root, then the dec
follows the laweg2eg

`;A12R2.

FIG. 10. Linear rule. Optimal values of the hyperparame
Copt .
7-9
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FIG. 11. Optimal values of the hyperparameterCopt for unrealizable rules.
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Thus, for the unrealizable rules that have 0 as one of
roots ofP, the generalization error decays to the asympto
value aseg2eg

`;a21/2. A similar result has been obtaine
by Amari et al. @31# within the annealed approximation fo
the case of a deterministic machine learning a noisy tea
~which is unrealizable!, and by other authors for Hebbia
learning of unrealizable tasks@27,4#. The same power law
has been obtained by Meir and Fontanari@6# for a realizable
problem learned with inconsistent algorithms, within the a
proximation of replica symmetry, which is probably not val
for large values ofa. Indeed, the soft margin algorithm wit
finite C is also inconsistent when the rule is the linear se
ration considered in Sec. III A, and in that case we obtai
different power law decay.

In the case of a linearly separable rule, the SMC withCopt
has eg'1/a, like the MSP, which corresponds toC5`.
However, at fixed finite values ofC the decay is slower, like
;1/a2/3. The same exponent has been obtained for a per
tron learning a separable rule using noisy examples with
step of replica symmetry breaking@18#. Within the replica
symmetric approximation to the same problem the expon
is 1/2 instead of 2/3@2#.

In the cases where 0 is not a root ofP(z), like for the
shifted linear rule, the decay is exponential,eg2eg

`

;exp(2«a).
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The presence or the absence of a rootzi50 induces dif-
ferent asymptotic behaviors because if 0 is a root, the
student perceptron aligned with the teacher hasuRu51 and
can perfectly separate the patterns closest to the hyperp
In that case, any small misalignment modifies the classifi
tion induced by the student, thus strongly modifying the
ror term in the cost function. On the other hand, if 0 is no
root, the student’s hyperplane is immersed in a sea of
terns of the same class. Small tilts of the hyperplane do
change significantly the classification nor the slacks term
the cost.

It is interesting to notice that the figures of the learni
curves as well as those ofCopt show an analogy between th
behavior for the SMCs with bounded slacks, like in the ca
of the shifted linear rule and that of the reversed wedge w
d,dc , and between those with unbounded slacks, as is
case with the sandwich rule and the reversed wedge w
d.dc . For this last type of rules,Copt diverges beyond
some finitea.

Consider now the smalla limit. It can be shown thatR
;^g& Aa/A2p and so, eg;1/22^g&2Aa/2p. Thus, irre-
spective of the rule considered, when the fraction of train
examples is small, the SMC generalizes better than by
dom guessing. This is not necessarily the case for larger
ues ofa. The power law found forR in this limit is common
7-10
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to many learning algorithms of the perceptron, the MSP@24#
and Hebb’s rule among them.

If we put R50 in the equations, and solve fora, the only
possible solution when̂g&Þ0 is a50. Thus,RÞ0 for all a
and has the sign of̂g& unless it has discontinuous chang
of sign. Notice that, given the asymptotic behaviors j
mentioned, ifR is discontinuous it can only have an eve
number of changes of sign. A similar result has already b
obtained in a broader frame@30#. From the behavior ofR in
the smalla limit, it can be seen that the problem gets ve
difficult to learn for rules witĥ g& close to 0. In fact, in the
very special case of̂g&50, R50 is a solution of the saddle
point equations for every value ofa. If this is the only so-
lution, the machine cannot learn at all, as is the case for
reversed wedge rule whend5dc . This behavior is similar to
the one of retarded learning, found in problems of unsup
vised learning with quadratic cost functions@30#. In that
case, it has been shown that learning is still possible, p
vided that the cost function is capable of extracting the
formation about the anisotropy of the distribution of stab
ties, contained in its higher order moments@32#. Notice that
this is not the case for the cost functions for the SMCs c
sidered in this paper.

VI. CONCLUSION

The properties of the recently proposed support vec
machines have been previously studied@16# in two situations
of interest, namely, for the cases where the student has e
the same structure as the teacher, or it is more complex
it. In both situations the rule to be learned is realizable, a
interesting properties of hard margin SVMs, like the ex
tence of hierarchical generalization, could be analyz
within the replica symmetry hypothesis.

In the present paper we addressed the situation where
task is more complex than the learning machine. In this c
the cost function for the SVMs is modified. It allows one
obtain a soft margin classifier that results from a trade-
controlled by a single parameterC, between increasing th
margin and minimizing the number of training errors. As t
cost function is quadratic and the domain of solutions
convex, we obtain the typical learning curves for a variety
unrealizable tasks using the replica symmetry hypothesis
considered problems characterized by a single symme
breaking directionw0, along which the patterns have alte
nating positive or negative class label. We have shown
the convergence of the corresponding learning curves to
asymptotic value follows either a power law or an expon
tial, depending on the position of the singularities of t
teacher’s rule.

Even if the student is well adapted to the task’s compl
ity, the SMC may generalize better than the error-free h
margin SVM, provided the hyperparameterC in the cost
function is correctly tuned. It can even attain almost Ba
sian performance.

We have studied the case of a rule given by a funct
P(z), which has a finite number of zeroes. It would be int
esting to study the case of a function with an infinite num
of zeroes, as, for exemple,P(z)5sin(1/z), which is not in-
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cluded in the class of functions we have analyzed.
We showed that the prefactors of the different asympto

behaviors are proportional to the average stability of
teacher’s rule,̂ g&. When this vanishes, the SMC with co
function ~5! cannot learn, and the overlap between the s
dent and the teacher directions isR50. We considered two
exponents for the error term in the cost function,k51 and
k52. It would be interesting to study the properties of SM
trained using exponentsk.2 in the cost function, as we
expect that these should detect the difference of the odd
ments of the patterns’ distribution in the directions para
and orthogonal tow0.

Another interesting question is whether the hierarchi
learning of hard margin SVMs exists also with SMCs. T
tackle this question, pattern distributions with two differe
anisotropies have to be considered.
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APPENDIX

The saddle point equations for the casesk51 andk52
are

12R22x5aI 1~xC,AQ,R;k!, ~A1!

R52aI 2~xC,AQ,R;k!, ~A2!

12R25aI 3~xC,AQ,R;k!, ~A3!

with, for the casek51,

I 1~xC,Q,R;1!5E
21/AQ

(xC21)/AQ
Dt t S t1

1

AQ
D g~ t;R,P!

1E
(xC21)/AQ

`

Dt
txC

AQ
g~ t;R,P!, ~A4!

I 2~xC,Q,R;1!5E
21/AQ

(xC21)/AQ
Dt

1

2 S t1
1

AQ
D 2

]g~ t;R,P!

]R

1E
(xC21)/AQ

`

Dt
xC

AQ
S t1

22xC

2AQ
D

3
]g~ t;R,P!

]R
, ~A5!
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I 3~xC,Q,R;1!5E
21/AQ

(xC21)/AQ
Dt S t1

1

AQ
D 2

g~ t;R,P!

1E
(xC21)/AQ

`

Dt
~xC!2

Q
g~ t;R,P! ~A6!

and, for the casek52,

I 1~xC,Q,R;2!5E
21/AQ

`

Dt
2xCt

112xC S t1
1

AQ
D g~ t;R,P!,

~A7!

I 2~xC,Q,R;2!5E
21/AQ

`

Dt
xC

112xC S t1
1

AQ
D 2

]g~ t;R,P!

]R
,

~A8!

I 3~xC,Q,R;2!5E
21/AQ

`

Dt
~2xC!2

~112xC!2S t1
1

AQ
D 2

g~ t;R,P!.

~A9!

From Eq.~A9! it can be seen that, fork52, x must vanish
in the infinitea limit in order to makeI3 vanish. Notice that
the functiong(t;R,P) in Eq. ~19! is always non-negative
For the casek51 the analysis of Eq.~A6! shows thatx must
either vanish or tend to a positive constant withq tending to
infinity. This last case can be ruled out by noticing that it
inconsistent with the vanishing ofI2 @notice that Eq.~A5!, as
well as Eq.~A8!, can be solved analytically#.

To show thatR can only tend to 1 or21 in the infinitea
limit, it is useful to rewriteI1 and I2, which in the casek
51 are

I 1~xC,Q,R;1!5E
21/AQ

(xC21)/AQ
Dt g~ t;R,P!

1R I2~xC,Q,R;2!, ~A10!

I 2~xC,Q,R;1!

5(
i 51

Z

t~zi
1!

e2zi
2

A2p

3H E
(21/AQ2ziR)/A12R2

[(xC21)/AQ2ziR]/A12R2

DtS tA12R21
1

AQ
1ziRD

1
xC

AQ
E

[(xC21)/AQ2ziR]/A12R2

`

Dt1~zi↔2zi !,J
~A11!

where thezi , i 51, . . . ,Z, are the zeros of the polynomia
P(z) andt(zi

1)5sgn@(zi1zi 11)/2# for k52,

I 1~xC,Q,R;2!5
2xC

112xCE21/AQ

`

Dt g~ t;R,P!

1R I2~xC,Q,R;2!, ~A12!
03190
I 2~xC,Q,R;2!

5
22xC

112xC (
i 51

Z

t~zi
1!

e2zi
2

A2p

3H E
(21/AQ2ziR)/A12R2

`

Dt S tA12R21
1

AQ
1ziRD

1~zi↔2zi !J . ~A13!

Let us suppose thatR tends to a constant different from
and21 asa tends to infinity. It can be seen that in that ca
I1, I2, andI3 must vanish at thesamerate. If we consider
teachers with at least one positive root, i.e.,unrealizable
teachers, it can be seen that the integral inI3 ~the second one
for the casek51) never vanishes. Thus,I3 must vanish as
(x/AQ)2 for k51 and asx2 for k52, if Q tends to a con-
stant or to infinity. But equations~A10! and~A12! show that
I1 andI2 cannot vanish at the same rate asI3 because the
first term on the right-hand side vanishes asx/AQ for k51
and asx for k52. If Q tends to 0 then I3 must vanish a
(x/AQ)2 for both cases. But thenI2 cannot vanish at the
same rate, because equations~A11! and ~A13! show thatI2
must vanish asxC^g&/AQ, unlesŝ g&50 ~this case will be
analyzed below!. Therefore,R tends either to 1 or to21 for
all teachers witĥ g&Þ0.

By putting R50 in the equations one can easily@notice
that g(t;0,P)[1] see that if^g&Þ0, it can only be a solu-
tion for a50. On the other hand, for̂g&50, R50 is a
solution foreveryvalue ofa, i.e., learning is impossible fo
this kind of teacher.

It is also possible to find the condition that makesR go to
each one of its limiting values~1 or 21). From what has
been said before regardingI3 it can be seen that it vanishe
asx2, and so, 12R2;ax2. Using this, and equation~A1! it
is evident thatI1 must vanish faster thanx. But, in the infi-
nite a limit, I1 is written, to first order, as

I 1~xC,Q,R;1!;
2x

AQ
H sgn~R!^g&

1E
2`

21/AQ
Dt t g~ t;61,P!J , ~A14!

I 1~xC,Q,R;2!;2xH sgn~R!
^g&

AQ
2E

21/AQ

`

Dtg~ t;61,P!J
2sgn~R! (

i /uzi u.1/AQ
t~zi

1!

3S uzi u2
1

AQ
D e2zi

2

A2p
. ~A15!

Thus, the term within brackets must vanish. For Eq.~A14!
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it is evident that this can only happen ifR→sgn(̂ g&). The
same can be shown for Eq.~A15!, with a bit of algebra. The
asymptotic value ofQ can be obtained by imposing the va
ishing of the above-mentioned terms.

To see the rate of decay of 12R2, notice that, from Eq.
s

ev

s

03190
~A3! and from the fact~shown above! that I3;x2, one gets
that 12R2;ax2. But, using the fact thatI1 must decay
faster thanx, equations~A11! and~A13! impose thatI2;x.
This, together with Eq.~A2!, gives thatx;1/a. Therefore,
12R2;1/a.
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